Several situations can lead to RAM-related performance problems with a particular machine:
RAM timing is slower than optimal machine spec.
RAM has minor flaws that appear only on detailed testing.
RAM is overheating.
There is insufficient RAM.
In the old days of Fast Page RAM, buying new RAM for your computer was a simple affair. You just needed to know what speed your motherboard supported and the maximum each slot would take. Today, there are many types and speeds of RAM, and the better motherboards may be tolerant of using RAM that does not match the motherboard’s maximum specs. For example, your motherboard may support PC133 RAM but will still work with PC100 RAM. But be aware that you may see performance decreases if you install RAM that is slower than the maximum spec. Some motherboards will even allow you to mix speeds but will default to the slowest RAM installed.
Minor flaws in RAM chips can lead to system slowdowns and instability. The least expensive chips often have minor flaws that will cause your system to slow down or Blue Screen intermittently. Although built-in mechanisms may allow the system to keep working, there is a performance hit when it has to deal with flawed RAM chips.
In the past, no one worried about RAM chips getting hot, because they didn’t seem to generate much heat. But that’s changed with newer RAM types, especially SDRAM. To check for overheating, open your computer’s case, power down, and pull the plug out. Ground yourself and touch the plastic on one of your RAM chips. Ouch! They get pretty hot. If you find that your RAM chips are overheating, you should consider buying a separate fan to cool your memory. If your motherboard doesn’t support a RAM fan, you might be able to get enough additional cooling by installing a fan card that plugs in to a PCI slot.
Of course, one common reason for poor performance that’s related to RAM is simply not having enough of it. Modern operating systems such as Windows 7 and today’s resource-hungry applications, combined with our increasing tendency toward extreme multitasking, result in a need for more RAM. The minimal specified system requirements may not cut it if you’re doing lots of multimedia or running other memory-intensive applications. 32-bit Windows is limited to using 4 GB of RAM, but 64-bit Windows 7 can handle from 8 to 192 GB, depending on the edition. If your system allows, adding more RAM can often increase performance.
Processor overheating
Chipmakers have recently been working to make processors more efficient, which means they generate less heat. Nonetheless, some modern processors still generate a lot of heat. That’s why all processors require some sort of cooling element, typically a fan of some type. A system’s Thermal Design Point (TDP) rating indicates, in watts, how much heat it can safely dissipate without exceeding the maximum temperature for the chip. When the processor temperature goes over spec, the system can slow down or run erratically (lock up) or may simply reboot. The processor fan may fail for several reasons:
Dust is preventing the fan from spinning smoothly.
The fan motor has failed.
The fan bearings are loose and jiggling.
Often, you can tell if there is a fan problem by listening and/or touching the computer. A fan that has loose bearings starts jiggling and vibrates the case, making a characteristic noise. As time goes by, the sounds and vibrations will become so prominent that you’ll change the fan out just to regain some peace and quiet.
You don’t always need to replace the fan. If it is covered with dust, you can often spray away the dust with compressed air. But even though you might get the fan running again, its life span has likely been reduced because of the overwork. You should keep an extra fan in reserve in case of failure.
Processors may also overheat because the heat sink is not properly placed above the processor or the thermal paste is not of good quality or was applied incorrectly (or not at all) when the system was built. This is more likely to be a problem with home-built systems but can happen with commercially manufactured ones as well. The paste can break down over time, and you may need to reapply it.
Case design is another element that can contribute to or help prevent overheating. Cases with extra fans, better vents, and adequate room inside for good airflow may cost more but can provide superior cooling performance. Small cases that squeeze components together can cause overheating. For this reason, laptops with powerful processors are prone to overheating.
No comments:
Post a Comment